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ABSTRACT 

Using the method of forcing of set theory, we prove the following two theorems 
on the existence of measurable choice functions: Let T be the closed unit inter- 
val [0,1] and let m be the usual Lebesgue measure defined on the Borel subsets 
of T. Theorem 1. Let S c T x T be a Borel set such that for all t E T, 

St clef {X l(t, X) ~ S} is countable and non-empty. Then there exists a count- 
able series of Leb~sgue-measurable functions fn : T ~ T sucla that S t = 
{f,  (t)[ n 6 ~ } for all t~ T. Theorem 2. Let W c [0, I] x [0, 1] be a Borel 
set such that foreachxE [0, 1], W x = {y ] (x,y) ~ W} is uncountable. Then 
there exists a function h: [0, t] x [0, 1] ~ W with the following properties: 
(a) foreach xE [0, 11, the function h(x,.) is one-one and onto W x and is 
Borel measurable; (b) for each y, h(" ,y) is Lebesgue measurable; (c) the 
function h is Lebesgue measurable. 

Le t  A c [0, 1] x [0, 1] be a Borel  set whose project ion on the x-axis consists 

o f  all points  in [0, 1]. Unde r  these circumstances,  Von N e u m a n n  [9] p roved  the 

existence o f  a Lebesgue measurab le  funct ion F ,  defined on [ 0 , 1 ] ,  such that  

F(x)~ A,a*= t (y [  ( x , y ) e A }  for  all x ~ [ 0 , 1 ] .  

Th rough  the use o f  forcing, we extend the foregoing result in several directions. 

T h e o r e m  1 deals  with the  case where  {Yl ( x , y )EA}  is countab le  for  every 

x c [0, 1]. We prove  the existence o f  a countable  series o f  Lebesgue measurab le  

funct ions { f}  such tha t  {f (x)}  = (y l (x ,  y) ~ A} for  every x ~ [0, 1].  In  T h e o r e m  2, 

(Yl (x ,y )~  A} is uncountable  for  all x ~ [0, 1].  We then  p roduce  an analog o f  

T h e o r e m  1. In  ano the r  pape r  [10], we consider  a s i tuat ion arising in marke t s  

with a con t inuum of  t raders ;  there  an affirmative answer  is given to a p rob l em 

fo rmula ted  by R. J. A u m a n n  and G. Debreu  [1] using the same techniques 

as those presented here. 
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For an understanding of the proofs in this articles, the reader should be familiar 

with the theorems and concepts relating to forcing in set theory. An acquaintance 

with the ideas developed in Solovay's paper [8, Chapter II] would also be helpful. 
The author wishes to express his deep appreciation to Jonathan Stavi for many 

valuable suggestions and clarifications. 

1. 
Let T be the closed unit interval [0, 1] and let m be the usual Lebesgue measure 

defined on the Borel subsets of T. We denote by :~ the set of real numbers. 

THEOI~M 1. Let S c T x ~ be a Borel set such that for  all t e T ,  
sae: t - {x I ( t , x ) ~ S }  is countable and non-empty. Then there exists a countable 

series of Lebesgue-measurable functions fn: T ~ ~ such that St = {fn(t)] n ~ co} 

for all t e T .  

PROOF. In accordance with [8,Chapter II, Section 1], there exist 1-[I pred- 

icates A2(xI ,x2 )  , Aa(xi, x2) which can be used to code every Borel subset of the 

real line, i.e., for every Borel subset E c ~ there exists a fixed parameter r/~ co,o 

such that for all x E~ ,  xeE~--~A2(~l,X ) and x(~E.-~A3(~l,x ) Similarly there are 

H ~  predicates Q2(x I , x2 , x3 )  , Q3(XI,X2, X3) which may be used to code every 

Borel subset O c :~ x ~ :  for some v ~ coo', (x, y) E O ~-~ Q2(v, x, y), (x, y) ~ O 

*-*Qa(v, x, y). Let P be an arithmetical formula which provably defines a 1-1  

correspondence p between [0, 1] and coo,. We shall often identify a ~ [0, 1] with p(a) 

without specific mention. This convention will allow us to code all Borel subsets 

of co '~ by means of the same predicates A 2 ( x l , x 2 )  , A3 (x i , x2 ) .  For any 2,# ~ coo, 

which code Borel subsets of ~ and ~ • :~ respectively, let B~,~ c ~ ,  B2,t~ 

~ x ~ be the Bore1 sets coded by ). and #. Further, let ~t ~ co ~ be some param- 

eter which codes S, i.e., S----B2,~. We now choose a countable transitive 

model M of ZFC such that ~l ~ M and such that every set in M is constructible 

from ~ .  The existence of a model satisfying these conditions cannot, of course, 

be proven within Zermelo-Fraenkel set theory (see [-2, p. 78]). However, an 

analysis of the present proof will show that M need only fulfill some finite 

subset of ZFC + ~l-constructibility in order for the proof to work. The existence 

of transitive models of any finite subset of ZFC + ~l-constructibility can be 

demonstrated using only the axioms of ZFC 1-2, p. 82]. Thus, our proof can, in 

fact, be carried out entirely within ZFC. Nevertheless, to simplify the exposition 

of the proof, we shall continue to assume that M fulfills all of the axioms of ZFC. 

For any/~ ~ coo which codes a Borel subset of ~ • :~ and any transitive model 
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N of ZFC containing p, let B2N, = B2, . C3 N. By virtue of the absoluteness of 

1-[~ statements [7, pp. 137-138], B N 2,, = {(x, y) I x, y e N & N IF Q2(la, x, y)} since 

Q2(#,x,y) is [Ill. BN2,. is therefore definable in N and thus B f ,  E N . ,  B~,z is 

defined analogously. 

Let t e n  be random with respect to M, i.e., for every # in M which codes a 

Borel subset of ~ ,  if re(B1,,) = 0, then t r BI,,. Since M is countable, almost every 

t e N in the real world is random over M. Using an adaption of the label space 

procedure [2, Chapter IV], we obtain a uniquely defined model M It] of  ZFC 

containing t, such that M c M(t). In M(t), every element is constructible from 41 

and t. 

Let L~ ~ be the language of set theory enriched by names for each of the members 

of M. For any 2, p e M, where 2 and # code Borel subsets of N and N x :~ 

respectively, let BI.x and B2, . be terms in ~ denoting the sets B~a and B~,  in M, 

i.e., the terms defined as {x ] A2(2, x)}, {(x, y)] Q2(p, x, y)}. We expand ~ to 2 "  by 

adding a new symbol, [. [ will denote t in M[t]. Every member of M[t] is then 

uniquely determined by some term in ~ '  [2, Chapter I V]. In particular, for every 

2~ E M[t] that codes a Borel subset of N x N, B~,~ tl is denoted by the term Bz,z 

of  ~ ' .  

Since the sets in M[t] are constructible from ~1 and t, the elements in to '~ be- 

longing to M[t] are well ordered by the ordinals and sentences through which 

they are constructed. Thus, there exists a fixed formula | y) in La' which, for 

each random t, defines a well ordering over the members of co '~ appearing in M[t], 
when interpreted in M[t]. 

For every random t, the statement "B2,r is Borel" holds true in M[t]. Thus 

M [t] IF"{yl(t,y)EB2,r is Borel", since {yl(t,y)EB~,~tl~} is the cross-section 

of  a Boret set. Hence there exists some ~/e co ~' in M[t] such that 

(1) "Vy(y e Bt, ~ +-~ (t, y) e B2,r 

holds true in M[t]. However, (1) is equivalent to 

VY([A2(r/, Y) & Q2(~,, t, y)] v [A3(r/, y) & Q3(~, t, y)]) 

which is [I~ and therefore absolute. Thus (1) also holds true in the real world. 

By hypothesis, the set (yl(t, y)EBz,~,) is countable for all t e [0, 1]. Therefore, 

B,,, is countable in the real world. But by Lemma 7 [8, p. 22] the statement 

"BL,  is countable" is absolute. Thus 

(2) M[t] ~ " (y[  (t, y) e BI,r/} is countable" 
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for all random t ~ [0, 1]. Let qt ~ c~176 be the first q in M[t] (under the well-ordering 

induced by | satisfying (1). 
We define v on co '~ x co in the following manner: 

v(~, 0) = {0c(1), ~(3), ~(5), ...} 

v(0~, 1) = {e(2), e(6), 0~(10), ...} 

v(e,n) = {~(2"" (2 .1  - 1)), ~(2"" (2- 2 -  1)),..., a(2"" (2" m -  1)),... }. 

Then for every sequence el, 0~2,"" of elements in co '~, there exists an ~ E co w such 

that v(e, 1) = el, v(e, 2) = e2,"" �9 v is clearly definable in every transitive model M 

of ZFC. v is also readily seen to be recursive. 

By virtue of the fact that M[t] ~ "{ylyeBl,.,} is countable" there exists 

an e~co '~ belonging to M[t] such that 

(3) M[t] ~ VY[Y~Bx, , t  ~" 3n(v(e,n) = y)]. 

Let at E co '~ be the first e in M[t] (under the well ordering induced by | satisfying 

(3). Then 

(4) "Vy(y ~/]l,,t  +-~ 3n(v(et, n) = y) ]"  

holds true in M[t]. As in the case of (1), (4) may also be represented as a 1--[~ 

relation. Due to the absoluteness of [-[~ relations, (4) is then fulfilled in the real 

world. 

qt and at are uniquely determined for each random t. For any rational q t and 

any natural nl, let Dql,, 1 be the set of random reals defined by 

t~Dq~,,~+-~,t is random and qx < v(o~t, na). 

By reviewing the methods used to define 0% we can readily verify that the relation 

"q l  < v(~t, nO"is expressible in ~ ' .  That is, for every rational ql and every 

natural n ~, there exists a sentence q~o(i) in ~o, such that for all random t, 

ql < v(ctt, nx) ~-~ (M[t] ~ Oo(t)). 

Applying Theorem II, 2.8 of [-8, p. 38] t, we obtain that Oq~,n ~ is Borel. 

_ def 
For each fixed x ~ [-0, 1], the set 5~ -- {y] (x, y) c B2,~ } is countable. Let Sx be 

the set of functions from the positive integers onto S~. In accordance with the 

axiom of choice, there exists a function ~ defined on [-0, 1] such that ~ (x )  c S~ 

tThis theorem says essentially that for every sentence tl)(t) in ..~q', the set ( t i t  is 
random & M[t] ~ ~ (t)) is Borel. 
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for each x ~ [-0, 1]. We now define the function f~(t, n), where t ~ [0, 1] and n is a 

positive integer. 

f v(ct t, n) for random t 
f~(t, n )  \ ~f(t)(n) for non-random t. 

Since Dq, n is Borel for every rational q and every natural n, ( t]~(t ,  nl) _-> ql} 

is Lebesgue measurable for all nl, ql. It follows that f~(t, n) is Lebsegue measur- 

able for each fixed n. Through the absoluteness of (4), we have that for every 

fixed xl e [0, 1], the set of values of f~(xl, n) coincides with Axc Thus, if we set 

fi(x) = f~(x, i), we find that {f~} has all of the desired properties. 

To show that the above proof can be carried out in ZFC, we make use of the 

fact that for any finite set Y of the axioms of ZFC the following is a theorem 

of ZFC: For any c e o2 '~ there exists a countable transitive model M such that 

(1) M ~ Y ,  c e M ;  

(2) M ~"Every set is constructible from c" ;  

(3) for every real t which is random over M, there exists a uniquely defined 

transitive model M[t]  such that 
(a) M c m[ t ] ;  t EM]-t]; 

(b) M[t] gJ" for every t which is random over M; 

(c) M[t] ~ "Every set is constructible from c and t " ;  

(d) there exists a fixed formula | x2) in .L,r (the language of M]'t])which 

defines a well ordering over the elements in o2'~ belonging to M[t] (when | x2) 

is interpreted in Ml-t]): 

(e) for every sentence ~u in th e language of M[t], there exists a Borel set A 

(in the real world) such that for every random t, (M[t] gk~)~-, t E A; 

(f) if Y contains a sufficiently large set of axioms, every 1-I~ relation is 

absolute. 

2. 
LEMMA. Let B ~ [0, I] be a non-countable Borel set. Then there exists a 

one-to-one Borel function F which takes the unit interval onto B. 

PROOF. The proof is analogous to that of the Cantor-Bernstein theorem. Since 

B is Borel and non-countable, it includes a perfect set B 1 c B [3, p. 447]. Let 

Q ~ B 1 be a countable series of points which is dense in B1. Then there exists 

a one-to-one order preserving mapping g of the rational numbers into Q. For all 

rational q ~ ['0, 1], let G(q) = #(q). For irrational t ~ [0, 1], let G(t) = Sup g(q). G is 
q ~ t  

q e [0,1"1 
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then a well defined 1 - 1 mapping from [0, 11 into B t. G is clearly Borel (it is 

in fact arithmetic l). 

Let B 2 = G([0 ,  1]).  B E can be described as follows: b ~ B E ~ [(There exists a 

rational q such that g(q)= b ) v  (There exists an increasing series (qi} whose 

least upper bound is irrational and g(ql) < b for all i and Supg(qi) = b)]. Alter- 

nately it can be defined as: be B 2 ~ [(There exists a rational q such that g(q) = b) v 

(For all e > 0  there exists a rational q such that g ( q ) < b &  I b - g ( q )  l < 8  

& for every increasing series (qi} c [0,1] ,  if Supt g(qi)= b then Supi qi is irra- 

tional)]. Thus B 2 is both Y~ and I-I~ and therefore Borel. More generally, the 

image under G of every Borel subset C c [0,1] is Borel. This is shown in the 

same manner as in the case of B 2. It follows that Gnc = G" G " ... �9 G(C) is Borel 

n iterations 

for every Borel subset C c [0, 1] and every positive integer n. Let A t consist of 

those points in [0,1] not belonging to B. Define F as follows: If  x e [0, 1] is such 

that x E GnA l for some n, let F(x) = G(x); otherwise let F(x) = x. F is readily seen 

to be Borel. Using considerations of the Cantor-Bernstein theorem, we find that F 

is also one-one and onto. 

THEOREM 2. Let W c [0, 11 x [0,11 be a Borel set such that for each 

x ~ [ 0 , 1 ] ,  W a~_f . . x -  (YI(x ,Y)  ~ W }  is uncountable. Let m be the usual Lebesgue 

measure on the Borel subsets of [0,11 . Then there exists a function 

h: [0, 11 x [0, 11 ~ W with the following properties: 

(a) for each x ~ [0,1], the function h(x , . )  is one-one and onto Wx and is 

Borel measurable; 

(b) for each y, h( ' ,  y) is Lebesgue measurable; h(x, y) ~ W~for all x; 

(c) the function h is Lebesgue measurable. 

PROOf. We combine the approach used in Theorem 1 with the methods of the 

preceding Lemma. 

Let 4o ~ to o' code the Borel set W under the predicate Q2 described in Theorem 1. 

Let M be a countable transitive model of ZFC containing 4o such that every set in 

M is constructible from 40. As was the case in the previous theorem, we need 

only assume that M fulfills some finite subset of ZFC;  however, for the sake of 

simplicity, we again stipulate that all axioms in ZFC are fulfilled by M. Let ~ be 

a language corresponding to M and let ~ '  be the language obtained from L# by 

adding the symbol f. For each t ~ [0, 11 which is random over M, let M[t] be the 

uniquely defined model containing t obtained through the label space procedure. 
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Let | x2) be a formula in ~ '  which defines a well ordering over the elements 

in o) ~ belonging to M[t]. In similar fashion, all other symbols defined in the proof 
M of Theorem 1, e.g., Az(xl,x2), Q2(xl,x2,x3), B2,, retain the same meanings and 

usages here. 

For random t, let Wt ~m ~i" {y I (t, y) e IV} r3 M[t] . By virtue of  the absoluteness 

of 1-I11 statements, Wt Mm = {yIM[t]  ~ Q2(~o,t,y)}.W~ m is thus definable by 

interpreting Q2(~o, t, y) in M[t],  and hence Wt s M[t]. wMt m is also Borel in M[t],  

uUm Let t/t 1 ~ M[t] be since it is the cross-section of a Borel set in M[t], namely ,-'2,r 
the first element in co '~ (under the well ordering imposed by | which codes 

W~ m under the predicate A2(x~, x2). Thus "Vy(A2(t/] , y ) ~  Q2(~o, t, y))" holds in 

M[t]. By absoluteness, this implies that t/t ~ codes the set {yl(t,y) ~ W} = Wt in 

the real world. In accordance with Lemma 7 [8, p. 32], the relation "t/ codes an 

uncountable Borel set" is absolute. Since {y](t,y)~ W) is uncountable in the 

real world, it therefore follows that W~ m is uncountable in M[t]. 
It is known that every uncountable Borel set Yc  ~ includes a perfect set as a 

subset. This is provable within the framework of ZFC and must therefore hold 

true in M[t]. Since perfect sets are Borel, every perfect set has a code. Let 

tl~ ~ M[t] be the first element (under 0 )  in co ~ such that M[t] ~ "qt z codes a 

perfect set, D,~, which is a subset of W~m. '' This means that the statement 

(6) "the set {y[ Q2(t/~, t, y)} is a perfect set and Vz[ 7 Qa(tlzt, t, z) ~ Q2(t/r t, z)]"  

holds true in M[t]. In accordance with Lemma 7 [8, p. 32], the relation "#  codes 

a perfect set of reals" is absolute. In addition, the relation gz['-I Q3(t/~, t, z) 

Q2(th x, t, z)] is 1-[~ and therefore absolute. It follows that (6) is absolute. This, in 

turn, implies that ~ ~ D ,,,  the set coded by t/~ in the real world, is a perfect set and 

D#~ ~ Wt. Let tl~ emi t ]  be the first element in co '~ that codes a series of points 

{s~} in M[t] such that {s~} is dense in D,~. Let q4 ~ M[t]  be the first element in 

co ~~ that codes a Borel function gC, ~ M[t] (by means of the graph) defined on the 

rationals in [0, 1] so that for every rational r, 3s e {s~} such that g,~ (r) = s and for 

all rational rl,  r2, rl > r2 --+ g,~(rl) > #,"(r2). The function coded by t/Z in the real 

world, g #~,, will also have the same property. Let t/~e M[t] be the first element in 

co ~~ that codes the Borel function G,  ~ M[t] defined by 
~t  

g~(x) for rational x e [0, 1] 
(7) G~ (x) 

L , ,~ao,,zSup grit(r) for irrational x E [0, 1]. 
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It is clear that the defining relation in (7) can be formulated in terms of both 

I-II and ~ statements. Using the fact that the defining relation in (7) may be 

expressed in terms of an absolute relation, we may readily show that Ge~. the 

Borel set coded by r/~ in the real world, constitutes the graph of a 1-1 function 

defined on [0. 1]. Moreover. the simultaneous expressibility of G#,~ in terms of 

2~ and I]~ statements implies that G~',sis a Borel function. Let C, ~ M[t] be the 

set defined by y ~ Ct ~ (y ~ M[ t] & 3x(x ~ [0, 1] c3 M[ t] & Q2(qT, x, y)), i.e., C, is 

~. Ct may alternately be defined by inter- the image of [0, 1] c3 M[t] under G 

preting the following statements in M[t] : y ~ C,~  [(There exists a rational q such 

that g,~(q) = y) v (For all e > 0 there exists a rational q such that g,,  ( q )<y  

&IY - g,,(q)] < e  & for every increasing series of rationals {q~ } ~ [0,11 , if 

Suplg,~(q~) = y then Supi qi is irrational)l. C, is thus definable in terms of ~ 

and ]~I statements and is therefore Borel in M[t]. Similarly, the image under 

G,~ of every Borel set B = [0, 1] n m[t] is likewise Borel (in m[t l ) .  Thus for 

every positive integer n, the function G"~ =G,~ �9 G,~ �9 ... �9 G,~ takes [0,1] n M[t] 
onto a Borel set in M[t]. , "V" 

iteratinns 

Let g ~ , ~  be the terms denoting the functions g~,,G~ in M[t], i.e., ~ 

- " { ( x ,  y) ] Q2(r x, y)}", G,~ - " { ( x ,  Y) I Qz(rh', x, y)}". When interpreted in the 

real world, ~ denotes the function G#n~. We assert that for any 2,/~ ~ M[t] that 

code Borel subsets of [0,1 ], the relation 

(8) "# codes the image (under GnU) of the Borel set coded by ~," 

is absolute. Relation (8) is true (in M[t] or in the real world) if and only if the 
relation 

(9) Vy[(A2(#. y) & [(There exists a rational q such that A2(2. q) & ~,~ (q) = y) 

v (For all e > 0 there exists a rational q such that ~,~(q) < y & I Y -  

< e & for every increasing series of rationals {qi} c [0.11. if Supi ig,~(q~) = Y 

then Sup/qi is irrational and A2(2. Supi qi))]) v (A3(~. y) & Vx(--nA3(.~ , x)---~ 

Q3(r/5, x. y))] 

holds true. However. (9) is equivalent to a 1--[~ statement and is therefore absolute. 

Let ~/6e M[tl be the first element in co ~' which codes the set A.~ = {x Ix e M[t]  

&x e [0. 11 &x q~ W~rtj}. Then A~',~. the set coded by t/6 in the real world, is equal 

to [0. 11 - W.. For every natural n. the image of A,~under Gn,~. G"~(A~). is Borel 

in M[t]. Let qTteM[t ] be the first element in co ~ which codes the Borel set E,~ 

%~U G" .(A .~ in M[t]. Then E#~. = kJnG'~,~(A#,.)as follows easily from the ab- 
n ~t ~t j 
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soluteness of (8). Let r/s ~ M[t] be the first element in co ~ such that ~/s codes the 
Borel function defined by 

dg f ~.;(x) x E [o, 1] &x e ~ . ,  
(10) F.~(x) 

L x x ~ [0,1] &x CE d.  

The defining condition in (10) is equivalent to the statement 

(11) Vx Vy(Q2(r/s, x, y)~-.[(x e [0,1] & Az(r/7, x) & Qz(qt s, x, y)) v 

(x e [0, 1] & Aa(r/~, x) &x = el]) 

when interpreted in m[t]. However, (11) is equivalent to a 1-[~ statement and is 

therefore absolute. Interpreting (11) in the real world, we obtain that F*.,~, the 

element coded by tff in the real world, is a 1 - 1 function defined on [0, 1] such that 

f G*,~ (x) x ~ [ 0 , 1 ] & x ~ E * , :  
F#,~(x) 

L x x e [0,1] &x CE*.j. 

Using considerations of the Cantor-Bernstein theorem as in the Lemma, we find 

that F*.~ takes the unit interval one-to-one onto Wr 

Let 
; r/s for random t ~ [0, 1] 

U(0 
0 for non-random t ~ [0, 1]. 

We assert that u(t) is Borel. 

For any rational r~,r2, rl < r2, let P,,,,2 = {t]u(t)~[rl,r2]} �9 P~,,,2 = {tit 
is random & q s e [r~, r2]} U {tit is non-random & rt < 0 < r2}. Since the set of  all 

random t's is Borel, the set { t] t is non-random & rl < 0 < r2} is likewise Borel. 

{tit is random & qt s ~[rl, r2]}= {tit is random & M[t] ~ "qtSE[rx, r2]"}.  

However, the relation "t/~ e [rx, r2]" is expressible in A a'. Thus by Theorem II, 

2.8 [8, p. 38], the set {t] tis random & M[t] ~ "ths e [ rDr2]"  } is Borel. Hence 

P,~.,, is Borel. Since P,~,,~ is the inverse image of an arbitrarily selected interval, 

it follows that u(t) is Borel. 

In accordance with the Lemma and the axiom of choice, there exists a function 

3f'(x): [0, 1]--, o '~ such that for all x e [0,1], 3f'(x) codes a 1-1 Borel function 

from [0,1 ] onto Wx. Let 

l~(t) de--f ~ fist for random t e l 0 , 1 ]  

~ ( t )  for non-random t e [0,1]. 
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We are now in a position to define h: 

h(t,y) de-f the unique z ~ [0,1] such that Q2(~(t),y, z). We must show, however, 

that h fulfills a ) -c )  as described in the formulation of the theorem. 

a) The fact that for non-random t, h(t , . ) is  1-1, onto W, and Borel follows 

immediately from the definition of h; for random t this derives from the ab- 

soluteness of the properties fulfilled by t/, 8. 

b) For any fixed Yl~[0 ,1 ]  and any rationalinterval [rl, r2], {tlh(t, y O ~  

[rl ,  r2]} = {t I h(t, Yl) ~ [rl, r2] and t is non-random} u {tiVz(Q2(rh 8,yl, z ) ~ z  

[rl ,  r2]) & t is random}. Let 21 code the Borel set of random t's and let 22 code 

the Borel function u(t). Then 

{t I Vz(Q2(rlS,, Yl, z) ~ z ~ [r 1, r2] ) & t is random} 

= {t I VzVw(( 7 Q3(22, t, w) & "7 Q3(w, yl,  z)) ~ z ~ Erl, r23 ) & A2()tl, t)} 

= {t I ~z3w( 7 Q3(22, t, w) & 7 O3(w, yl,  z) & z ~ [rl, r2] & -7 Aa(21, t)}. 

This is simultaneously ~ and H I  and is therefore Borel. On the other hand 

{tj h(t, y l ) e [ r l ,  r2] & t  is non-random} is of  Lebesgue measure zero. Thus 

{t] h(t, Yl) ~ [rl,  r2]} is Lebesgue measurable for every rational interval. 

c) is proven in much the same way as b). 
Q .E .D.  

3. 

To the best of my knowledge, all known proofs of the fact that the power 

axiom holds in M[t] make use of the replacement axiom of ZF. The weaker set of 

axioms in Zermelo set theory (in particular the separation axiom) appears to be 

insufficient to establish this result. At the same time, the proofs in this article 

seem to depend upon the validity of the power axiom in M[t]. Another propo- 

sition which appears essential to our proofs is the existence of a transitive model M 

of a sufficiently large (but finite) subset Y- of the axioms of ZFC. Y" must be rich 

enough to guarantee that all Z ~ and I-I 11 relations that hold in M hold true in 

the real world as well. The existence of such models in all likelihood cannot be 

proven by means of the Zermelo axioms alone. Thus, although the theorems pre- 

sented here and in [10] are analytical in nature, the provability of some of them may 

depend upon the stronger axioms in ZFC. t It would be interesting to know whether 

these theorems can be proven if one uses only the axioms of Zermelo set theory. 

t A stronger version of Theorem 1 was proven by N. Lusin in [5, p. 244]. 
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